Membrane Expansion Increases Endocytosis Rate during Mitosis

نویسندگان

  • Drazen Raucher
  • Michael P. Sheetz
چکیده

Mitosis in mammalian cells is accompanied by a dramatic inhibition of endocytosis. We have found that the addition of amphyphilic compounds to metaphase cells increases the endocytosis rate even to interphase levels. Detergents and solvents all increased endocytosis rate, and the extent of increase was in direct proportion to the concentration added. Although the compounds could produce a variety of different effects, we have found a strong correlation with a physical alteration in the membrane tension as measured by the laser tweezers. Plasma membrane tethers formed by latex beads pull back on the beads with a force that was related to the in-plane bilayer tension and membrane- cytoskeletal adhesion. We found that as cells enter mitosis, the membrane tension rises as the endocytosis rate decreases; and as cells exited mitosis, the endocytosis rate increased as the membrane tension decreased. The addition of amphyphilic compounds decreased membrane tension and increased the endocytosis rate. With the detergent, deoxycholate, the endocytosis rate was restored to interphase levels when the membrane tension was restored to interphase levels. Although biochemical factors are clearly involved in the alterations in mitosis, we suggest that endocytosis is blocked primarily by the increase in apparent plasma membrane tension. Higher tensions inhibit both the binding of the endocytic complex to the membrane and mechanical deformation of the membrane during invagination. We suggest that membrane tension is an important regulator of the endocytosis rate and alteration of tension is sufficient to modify endocytosis rates during mitosis. Further, we postulate that the rise in membrane tension causes cell rounding and the inhibition of motility, characteristic of mitosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis.

Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 ...

متن کامل

A role of endocytosis in plant cytokinesis.

The preprophase band (PPB) of microtubules (MTs) marks the site of the future division plane irrespective of the orientation of the equatorial plane. Because the PPB MTs disappear during prometaphase, some positional information is thought to remain in the cortical cytoplasm after the disappearance of the PPB MTs. Cytoskeletal proteins are known to be excluded from the PPB site during mitosis. ...

متن کامل

Endocytosis and chloroquine accumulation during the cell cycle of hepatoma cells in culture

Variations of endocytic and of lysosomal functions during the cell cycle have been investigated in synchronized hepatoma cells (derived from Morris hepatoma 7288c) by following the cellular uptake of horseradish peroxidase, dextran (mol wt. 70,000), and chloroquine. Cell fractionation and cytochemistry show that in asynchronously growing cells exposed for 1 h to 5 mg/ml peroxidase, the bulk of ...

متن کامل

Dynamin 2 associates with microtubules at mitosis and regulates cell cycle progression.

Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 144  شماره 

صفحات  -

تاریخ انتشار 1999